首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   14篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   6篇
  2016年   12篇
  2015年   11篇
  2014年   11篇
  2013年   11篇
  2012年   12篇
  2011年   23篇
  2010年   7篇
  2009年   11篇
  2008年   13篇
  2007年   9篇
  2006年   11篇
  2005年   8篇
  2004年   5篇
  2003年   5篇
  2002年   8篇
  2001年   8篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1972年   2篇
  1969年   1篇
  1966年   1篇
排序方式: 共有247条查询结果,搜索用时 31 毫秒
81.
82.
Here we report the design of a bioluminescence resonance energy transfer (BRET)-based sensing system that could detect nucleic acid target in 5 min with high sensitivity and selectivity. The sensing system is based on adjacent binding of oligonucleotide probes labeled with Renilla luciferase (Rluc) and quantum dot (Qd) on the nucleic acid target. Here Rluc, a bioluminescent protein that generates light by a chemical reaction, is employed as an energy donor, and a quantum dot is used as an energy acceptor. Bioluminescence emission of Rluc overlaps with the Qd absorption whereas the emission of Qd is shifted from the emission of Rluc allowing for monitoring of BRET. In the presence of target, the labeled probes bind adjacently in a head-to-head fashion leading to BRET from Rluc to Qd upon addition of a substrate coelenterazine. The sensing system could detect target nucleic acid in buffer as well as in Escherichia coli cellular matrix in 5 min with a detection limit of 0.54 pmol. The ability to detect target nucleic acid rapidly in a cellular matrix with high sensitivity will prove highly beneficial in biomedical and environmental applications.  相似文献   
83.
This study examined the hypothesis that vagotonic and sympatholytic effects of cardiac enkephalins are independently mediated by different receptors. A dose-response was constructed by administering the delta-receptor opioid methionine-enkephalin-arginine-phenylalanine (MEAP) by microdialysis into the interstitium of the canine sinoatrial node during vagal and sympathetic stimulation. The right cardiac sympathetic nerves were stimulated as they exited the stellate ganglion at frequencies selected to increase heart rate approximately 35 bpm. The right cervical vagus was stimulated at frequencies selected to produce a two-step decline in heart rate of 25 and 50 bpm. A six-step dose-response was constructed by recording heart rates during nerve stimulation as the dose of MEAP was increased between 0.05 pmol/min and 1.5 nmol/min. Vagal transmission improved during MEAP at 0.5 pmol/min. However, sympathetically mediated tachycardia was unaltered with any dose of MEAP. In Study 2, a similar dose-response was constructed with the kappa-opioid receptor agonist trans(+/-)-3-4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide-HCl (U-50488H) to illustrate an independent sympatholytic effect and to verify its kappa-receptor character. U-50488H gradually suppressed the sympathetic tachycardia, with a significant effect obtained only at the highest dose (1.5 nmol/min). U-50488H had no effect on vagally mediated bradycardia. Surprisingly, the sympatholytic effect was not reversed by withdrawing U-50488H or by the subsequent addition of the kappa-antagonist 17,17'-(dichloropropylmethyl)-6,6',7,7'-6,6'-imino-7,7'-binorphinan-3,4',14,14'-tetroldi-hydrochloride (norBNI). Study 3 was conducted to determine whether the sympatholytic effect of U-50488H could be prevented by norBNI. NorBNI blocked the sympatholytic effect of the U50488H for 90 mins. When norBNI was discontinued afterward and U-50488H was continued alone, a sympatholytic effect emerged within 30 mins. Collectively these observations support the hypothesis that the vagotonic influence of MEAP is not dependent on a sympatholytic influence. Furthermore, the sympatholytic effect is mediated independently by kappa-receptors. The sympatholytic effect of sustained kappa-receptor stimulation appears to evolve gradually into a functional state not easily reversed.  相似文献   
84.

Background

Malaria imposes significant costs on households and the poor are disproportionately affected. However, cost data are often from quantitative surveys with a fixed recall period. They do not capture costs that unfold slowly over time, or seasonal variations. Few studies investigate the different pathways through which malaria contributes towards poverty. In this paper, a framework indicating the complex links between malaria, poverty and vulnerability at the household level is developed and applied using data from rural Kenya.

Methods

Cross-sectional surveys in a wet and dry season provide data on treatment-seeking, cost-burdens and coping strategies (n = 294 and n = 285 households respectively). 15 case study households purposively selected from the survey and followed for one year provide in-depth qualitative information on the links between malaria, vulnerability and poverty.

Results

Mean direct cost burdens were 7.1% and 5.9% of total household expenditure in the wet and dry seasons respectively. Case study data revealed no clear relationship between cost burdens and vulnerability status at the end of the year. Most important was household vulnerability status at the outset. Households reporting major malaria episodes and other shocks prior to the study descended further into poverty over the year. Wealthier households were better able to cope.

Conclusion

The impacts of malaria on household economic status unfold slowly over time. Coping strategies adopted can have negative implications, influencing household ability to withstand malaria and other contingencies in future. To protect the poor and vulnerable, malaria control policies need to be integrated into development and poverty reduction programmes.  相似文献   
85.
Ultra-low-dose methionine-enkephalin-arginine-phenylalanine improves vagal transmission (vagotonic) and decreases heart rate via delta(1)-opioid receptors within the sinoatrial (SA) node. Higher doses activate delta(2)-opioid receptors, interrupt vagal transmission (vagolytic), and reduce the bradycardia. Preconditioning-like occlusion of the nodal artery produced a vagotonic response that was reversed by the delta(1)-antagonist 7-benzylidenaltrexone (BNTX). The following study tested the hypothesis that extended delta(1)-opioid receptor stimulation reduces subsequent delta(2)-receptor responses. The delta(2)-agonist deltorphin II was introduced in the SA node by microdialysis to evaluate delta(2) responses before and after infusion of the delta(1)-agonist TAN-67. TAN-67 reduced the vagolytic effect of deltorphin by two-thirds. When the delta(1)-antagonist BNTX was combined with TAN-67, the deltorphin response was preserved, suggesting that attrition of the prior response was mediated by delta(1) activity. When TAN-67 was omitted in time control studies, some loss of delta(2) responses was apparent in the absence of the delta(1) treatment. This loss was also eliminated by BNTX, suggesting that the attenuation of the response after deltorphin alone was also the result of delta(1) activity. Additional studies tested TAN-67 alone in the absence of prior deltorphin. When time controls were conducted without the initial deltorphin treatment, a robust vagolytic response was observed. When TAN-67 preceded the delayed deltorphin, the vagolytic response was eroded, indicating an independent effect of TAN-67. BNTX infused afterward was unable to restore the delta(2) response. These data support the conclusion that the loss of the delta(2) response resulted from reduced delta(2) activity mediated by continued delta(1)-receptor stimulation and not the arithmetic consequence of increased competition from that same delta(1) receptor.  相似文献   
86.
The cardiac enkephalin, methionine-enkephalin-arginine-phenylalanine (MEAP), alters vagally induced bradycardia when introduced by microdialysis into the sinoatrial (SA) node. The responses to MEAP are bimodal; lower doses enhance bradycardia and higher doses suppress bradycardia. The opposing vagotonic and vagolytic effects are mediated, respectively, by delta(1) and delta(2) phenotypes of the same receptor. Stimulation of the delta(1) receptor reduced the subsequent delta(2) responses. Experiments were conducted to test the hypothesis that the delta-receptor interactions were mediated by the monosialosyl ganglioside GM-1. When the mixed agonist MEAP was evaluated after nodal GM-1 treatment, delta(1)-mediated vagotonic responses were enhanced, and delta(2)-mediated vagolytic responses were reduced. Prior treatment with the delta(1)-selective antagonist 7-benzylidenaltrexone (BNTX) failed to prevent attrition of the delta(2)-vagolytic response or restore it when added afterward. Thus the GM-1-mediated attrition was not mediated by delta(1) receptors or increased competition from delta(1)-mediated vagotonic responses. When GM-1 was omitted, deltorphin produced a similar but less robust loss in the vagolytic response. In contrast, however, to GM-1, the deltorphin-mediated attrition was prevented by pretreatment with BNTX, indicating that the decline in response after deltorphin alone was mediated by delta(1) receptors and that GM-1 effectively bypassed the receptor. Whether deltorphin has intrinsic delta(1) activity or causes the release of an endogenous delta(1)-agonist is unclear. When both GM-1 and deltorphin were omitted, the subsequent vagolytic response was more intense. Thus GM-1, deltorphin, and time all interact to modify subsequent delta(2)-mediated vagolytic responses. The data support the hypothesis that delta(1)-receptor stimulation may reduce delta(2)-vagolytic responses by stimulating the GM-1 synthesis.  相似文献   
87.
The outer hair cell (OHC) is an extremely specialized cell and its proper functioning is essential for normal mammalian hearing. This article reviews recent developments in theoretical modeling that have increased our knowledge of the operation of this fascinating cell. The earliest models aimed at capturing experimental observations on voltage-induced cellular length changes and capacitance were based on isotropic elasticity and a two-state Boltzmann function. Recent advances in modeling based on the thermodynamics of orthotropic electroelastic materials better capture the cell’s voltage-dependent stiffness, capacitance, interaction with its environment and ability to generate force at high frequencies. While complete models are crucial, simpler continuum models can be derived that retain fidelity over small changes in transmembrane voltage and strains occurring in vivo. By its function in the cochlea, the OHC behaves like a piezoelectric-like actuator, and the main cellular features can be described by piezoelectric models. However, a finer characterization of the cell’s composite wall requires understanding the local mechanical and electrical fields. One of the key questions is the relative contribution of the in-plane and bending modes of electromechanical strains and forces (moments). The latter mode is associated with the flexoelectric effect in curved membranes. New data, including a novel experiment with tethers pulled from the cell membrane, can help in estimating the role of different modes of electromechanical coupling. Despite considerable progress, many problems still confound modelers. Thus, this article will conclude with a discussion of unanswered questions and highlight directions for future research.  相似文献   
88.
The bidomain equations are widely used for the simulation of electrical activity in cardiac tissue. They are especially important for accurately modeling extracellular stimulation, as evidenced by their prediction of virtual electrode polarization before experimental verification. However, solution of the equations is computationally expensive due to the fine spatial and temporal discretization needed. This limits the size and duration of the problem which can be modeled. Regardless of the specific form into which they are cast, the computational bottleneck becomes the repeated solution of a large, linear system. The purpose of this review is to give an overview of the equations and the methods by which they have been solved. Of particular note are recent developments in multigrid methods, which have proven to be the most efficient.  相似文献   
89.
Stem cell therapy has emerged as a promising approach for treatment of a number of diseases, including delayed and non-healing wounds. However, targeted systemic delivery of therapeutic cells to the dysfunctional tissues remains one formidable challenge. Herein, we present a targeted nanocarrier-mediated cell delivery method by coating the surface of the cell to be delivered with dendrimer nanocarriers modified with adhesion molecules. Infused nanocarrier-coated cells reach to destination via recognition and association with the counterpart adhesion molecules highly or selectively expressed on the activated endothelium in diseased tissues. Once anchored on the activated endothelium, nanocarriers-coated transporting cells undergo transendothelial migration, extravasation and homing to the targeted tissues to execute their therapeutic role. We now demonstrate feasibility, efficacy and safety of our targeted nanocarrier for delivery of bone marrow cells (BMC) to cutaneous wound tissues and grafted corneas and its advantages over conventional BMC transplantation in mouse models for wound healing and neovascularization. This versatile platform is suited for targeted systemic delivery of virtually any type of therapeutic cell.  相似文献   
90.
Aequorin fusion proteins have been used extensively in intracellular Ca2+ measurements and in the development of binding assays. Gene fusions to aequorin for production of fusion proteins have been so far limited to its N-terminus, as previous studies have indicated that aequorin loses its activity upon modification of its C-terminus. To further investigate this, two model peptides, an octapeptide (DTLDDDDL), and leu-enkephalin (TGGFL), an opioid peptide, were fused to the C-terminus of a cysteine-free mutant of aequorin through genetic engineering. The octapeptide was also fused to the N-terminus of the aequorin-leu-enkephalin fusion protein, which enables its affinity purification. Contrary to reports of earlier studies, we found that aequorin retains its bioluminescence activity after modification of the C-terminus. The half-life of light emission and the calibration curves obtained with the fusion proteins were comparable to those of the cysteine-free mutant of aequorin. Dose-response curves for the octapeptide were generated using two aequorin-octapeptide fusion proteins with the octapeptide fused to the N-terminus in one case, and to the C-terminus in the other. Similar detection limits for the octapeptide were obtained using both fusion proteins. The C-terminal fusion system has advantages in cases where antibodies recognize only the C-terminus of the peptide, as well as in cases where the functionality of the peptide lies in its C-terminus. The purification is also simplified as the affinity tag can be engineered at one terminus and the peptide of interest at the other.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号